How to Classified Stainless Steel by their Crystalline Structure?
- Views:0
- Author:
- Publish Time:2019-10-08
- Origin:
* Austenitic stainless steels comprise over 70% of total stainless steel production. They contain a maximum of 0.15% carbon, a minimum of 16% chromium and sufficient nickel and/or manganese to retain an austenitic structure at all temperatures from the cryogenic region to the melting point of the alloy. A typical composition is 18% chromium and 10% nickel, commonly known as 18/10 stainless is often used in flatware. Similarly 18/0 and 18/8 is also available.
* Super austenitic stainless steels, such as alloy AL-6XN and 254SMO, exhibit great resistance to chloride pitting and crevice corrosion due to high Molybdenum contents (>6%) and nitrogen additions and the higher nickel content ensures better resistance to stress-corrosion cracking over the 300 series. The higher alloy content of "Super austenitic" steels means they are fearsomely expensive and similar performance can usually be achieved using duplex steels at much lower cost.
* Ferritic stainless steels are highly corrosion resistant, but far less durable than austenitic grades and cannot be hardened by heat treatment. They contain between 10.5% and 27% chromium and very little nickel, if any. Most compositions include molybdenum; some, aluminum or titanium. Common ferritic grades include 18Cr-2Mo, 26Cr-1Mo, 29Cr-4Mo, and 29Cr-4Mo-2Ni.
* Martensitic stainless steels are not as corrosion resistant as the other two classes, but are extremely strong and tough as well as highly machineable, and can be hardened by heat treatment. Martensitic stainless steel contains chromium (12-14%), molybdenum (0.2-1%), no nickel, and about 0.1-1% carbon (giving it more hardness but making the material a bit more brittle). It is quenched and magnetic. It is also known as "series-00" steel.
* Duplex stainless steels have a mixed microstructure of austenite and ferrite, the aim being to produce a 50:50 mix although in commercial alloys the mix may be 60:40. Duplex steel have improved strength over austenitic stainless steels and also improved resistance to localized corrosion particularly pitting, crevice corrosion and stress corrosion cracking. They are characterized by high chromium and lower nickel contents than austenitic stainless steels.